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ABSTRACT

BUTTE, N. F., W. W. WONG, J. S. LEE, A. L. ADOLPH, M. R. PUYAU, and I. F. ZAKERI. Prediction of Energy Expenditure and

Physical Activity in Preschoolers. Med. Sci. Sports Exerc., Vol. 46, No. 6, pp. 1216–1226, 2014. Purpose: Accurate, nonintrusive, and

feasible methods are needed to predict energy expenditure (EE) and physical activity (PA) levels in preschoolers. Herein, we validated

cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on accelerometry and heart rate

(HR) for the prediction of EE using room calorimetry and doubly labeled water (DLW) and established accelerometry cut points for PA

levels.Methods: Fifty preschoolers, mean T SD age of 4.5 T 0.8 yr, participated in room calorimetry for minute-by-minute measurements

of EE, accelerometer counts (AC) (Actiheart and ActiGraph GT3X+), and HR (Actiheart). Free-living 105 children, ages 4.6 T 0.9 yr,

completed the 7-d DLW procedure while wearing the devices. AC cut points for PA levels were established using smoothing splines and

receiver operating characteristic curves. Results: On the basis of calorimetry, mean percent errors for EE were j2.9% T 10.8% and

j1.1% T 7.4% for CSTS models and j1.9% T 9.6% and 1.3% T 8.1% for MARS models using the Actiheart and ActiGraph+HR

devices, respectively. On the basis of DLW, mean percent errors were j0.5% T 9.7% and 4.1% T 8.5% for CSTS models and 3.2% T

10.1% and 7.5% T 10.0% for MARS models using the Actiheart and ActiGraph+HR devices, respectively. Applying activity EE

thresholds, final accelerometer cut points were determined: 41, 449, and 1297 cpm for Actiheart x-axis; 820, 3908, and 6112 cpm for

ActiGraph vector magnitude; and 240, 2120, and 4450 cpm for ActiGraph x-axis for sedentary/light, light/moderate, and moderate/

vigorous PA (MVPA), respectively. On the basis of confusion matrices, correctly classified rates were 81%–83% for sedentary PA,

58%–64% for light PA, and 62%–73% for MVPA. Conclusions: The lack of bias and acceptable limits of agreement affirms the validity

of the CSTS and MARS models for the prediction of EE in preschool-aged children. Accelerometer cut points are satisfactory for the

classification of sedentary, light, and moderate/vigorous levels of PA in preschoolers. Key Words: ACCELEROMETER, HEART

RATE, ACTIHEART, ACTIGRAPH, CALORIMETRY

A
ccurate, nonintrusive, and feasible techniques to
predict energy expenditure (EE) and physical ac-
tivity (PA) levels under free-living conditions fa-

cilitate the study of energy regulation and habitual PA of
preschool-age children. Accelerometers and miniaturized
heart rate (HR) monitors permit the measurement of ele-
ments of these complex physiologic processes, which can be
used in advanced mathematical models to predict EE and PA
levels. Because the relationships between HR, accelerometer
output, and EE differ in preschoolers compared with older
children, prediction equations require development and
validation in this age group (21,28,30,34).

We recently developed cross-sectional time series (CSTS)
and multivariate adaptive regression splines (MARS)
models for the prediction of EE based on minute-by-minute
measurements of room respiration calorimetry, accelero-
metry, and HR monitoring in 69 preschoolers (41). In this
previous study, commercially available accelerometers/HR
monitors (Actiheart and ActiGraph GT3X+) were used. The
advantage of room respiration calorimetry for the develop-
ment of EE prediction equations is the high density of con-
tinuous (not just steady state) EE data for several hours
obtainable on children undergoing structured as well as un-
structured activities, unencumbered by respiratory gas col-
lection equipment.

Relative to the EE measured by calorimetry, the mean
percent errors of the CSTS and MARS models indicated a
lack of bias and acceptable limits of agreement at the group
and individual levels (41). The mean T SD percent errors
predicting awake EE (j1.1% T 8.7%, 0.3% T 6.9%,
and j0.2% T 6.9%) with CSTS models were slightly higher
than those with MARS models (j0.7% T 6.0%, 0.3% T
4.8%, and j0.6% T 4.6%) for Actiheart, ActiGraph, and
ActiGraph+HR devices, respectively. Predicted awake EE
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values were within T10% for 81%–87% of individuals for
CSTS models and for 91%–98% of individuals for MARS
models. Concordance correlation coefficients (CCC) were
excellent: 0.936, 0.931, and 0.943 for CSTS EE models and
0.946, 0.948, and 0.940 for MARS EE models for Actiheart,
ActiGraph, and ActiGraph+HR devices, respectively. The
satisfactory performance of the CSTS and MARS models
for the prediction of EE in preschoolers warranted inde-
pendent validation.

In addition, accelerometers can be used to assess PA
levels in preschool-age children (20,35). Accelerometer cut
points for sedentary, light, moderate, and vigorous PA levels
in preschoolers have been identified primarily using direct
observation (5,8,9,24,28,31,36), although a few studies have
used respiration calorimetry (2,21,22) as the criterion method.
While essential for identifying the types of activities, direct
observation is imprecise for the quantification of the intensity
of PA and thus the level of EE. If the rationale for assessing
PA is to capture a component of the child’s energy balance,
validation of accelerometers is preferably based on calori-
metric measurements representing the range of PA charac-
teristic of preschoolers (18,38).

In this study, we validated CSTS and MARS models for
the prediction of minute-by-minute EE and established ac-
celerometer cut points for PA levels in preschool-age
children. Our specific aims were 1) to validate CSTS and
MARS models based on observable child characteristics,
HR, and accelerometer counts (AC) for the prediction of
minute-by-minute EE against room respiration calorimetry;
2) to validate the CSTS and MARS models against 7-d mean
total energy expenditure (TEE) using the doubly labeled
water (DLW) method under free-living conditions; and 3) to
define AC cut points for sedentary, light, moderate, and
vigorous levels of PA in preschool-age children.

MATERIALS AND METHODS

Study design. The overall study design called for two
independent cohorts to develop and validate prediction
equations for EE in preschool-age children. The children
were recruited stratified by age and sex, using fliers at local
clinics and preschool centers in Houston. For model devel-
opment, CSTS and MARS models were developed based
on minute-by-minute measurements of room respiration
calorimetry, accelerometry, and HR monitoring in 69 pre-
schoolers and published elsewhere (41). For model valida-
tion, the CSTS and MARS models were validated also based
on minute-by-minute measurements of room respiration
calorimetry, accelerometry, and HR monitoring in an inde-
pendent set of 50 preschoolers. The two sets were not signif-
icantly different with respect to age, sex, weight, height, or
bodymass index (BMI) z-score. The validation protocol using
calorimetry entailed a 7-h visit to the Children’s Nutrition
Research Center metabolic research unit. In addition, both the
development (n = 69) and validation (n = 50) cohorts were
asked to complete the 7-d DLW protocol for model validation.

A total of 105 of these children successfully completed
the 7-d DLW validation protocol under free-living conditions.
The DLW measurements were considered independent be-
cause these data were not used in the development of the
models. The 7-d protocol entailed the DLW method, con-
comitant with accelerometry and HR monitoring.

The Institutional Review Board for Human Subject Re-
search for Baylor College of Medicine and Affiliated Hos-
pitals approved the protocol. All parents/primary caretakers
gave written informed consent to participate in this study.

Subjects. Healthy preschool-age children, ages 3 to
5 yr old, were eligible for this study. Children on prescrip-
tion drugs or with chronic diseases, including endocrine
disorders, asthma treated with steroids, sleep apnea, and
any condition that interfered with PA, were excluded from
the study.

Anthropometry. Body weight to the nearest 0.1 kg was
measured with a digital balance, and height to the nearest
1 mm was measured with a stadiometer. BMI was calculated
as weight/height2 (kgImj2). Nonoverweight was defined
as G85th percentile for BMI, and overweight/obese was de-
fined as Q85th percentile for BMI, according to the US
Centers for Disease Control and Prevention (15).

Accelerometry and HR monitoring: Actiheart. Acti-
heart (CamNtech Ltd, Cambridge, UK) is a small (thick-
ness = 7 mm, diameter = 33 mm, total weight = 10 g) device
equipped with a uniaxial accelerometer and electrocardio-
gram signal processor. Actiheart was attached to the chest
using two electrodes (Skintact Premier; Leonhard Lang
GmbH, Innsbruck, Austria). The main sensor was attached
left of the sternum and secured with the adhesive tab on
the electrode. The lead was attached parallel along the
midclavicular line at the level of the third intercostal space
(upper position) or just below the left side of the chest (lower
position). The electrodes were checked and replaced if there
was poor adhesion. At the conclusion of the calorimetry
protocol or 7-d DLW protocol, the data were downloaded
into Excel. HR and AC data acquisition by Actiheart was set
at 15-s epochs. Actiheart data were collapsed into 60-s
epochs and aligned with the minute-by-minute EE data. HR
data were filtered with an upper cut point of 220. The lower
cut point for HR filtering was set at a value of 10% below
the 20-min minimal HR observed for each subject during
sleep.

Accelerometry: ActiGraph GT3X+. ActiGraph GT3X+
(ActiGraph, Pensacola, FL), a triaxial accelerometer, was used
to measure the amount and frequency of movement of the
children. The monitor is compact and lightweight, measuring
4.6 cm � 3.3 cm � 1.5 cm with a weight of 19 g. The output
includes activity counts (vertical x, horizontal y, and diagonal
z axes), vector magnitude, which is equal to the square root of
((amplitude x)2 + (amplitude y)2 + (amplitude z)2), and number
of steps taken. The inclinometer feature of ActiGraph GT3X+
indicates subject position (1 = standing, 2 = lying down, 3 =
sitting) and identifies periods when the device has been re-
moved (0 = monitor off). Each sample was summed over a
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60-s epoch. The ActiGraph monitors were affixed above the
iliac crest of the right side of the hip with an adjustable elastic
belt. Data acquisition storage was set at 15-s epochs. Data were
downloaded into Excel and collapsed into 60-s intervals to
align with calorimeter minute-by-minute data.

Room respiration calorimetry. While inside a room
respiration calorimeter, the child was instructed to follow a
protocol of PA designed to characterize minute-by-minute
EE, AC, and HR relationships characteristic of this age
group. Oxygen consumption (V̇O2) and carbon dioxide
production (V̇CO2) were measured continuously in a 19-m3

fast-response room calorimeter, the performance of which
has been described previously (19). EE was computed using
the Weir equation (37). V̇O2, V̇CO2, EE, and HR were av-
eraged at 1-min epochs. The calorimeters were decorated as
a playroom for preschool-age children. While in the calo-
rimeter, all children were asked to perform a series of PA in
the same order between 0900 and 1600 h under staff su-
pervision. Activities included watching television, coloring,
playing video games, playing with child’s kitchen and other
toys, dancing, performing aerobics, running in place, and
napping. In between the series of scheduled PA, the children
were given ‘‘free time’’ to engage in light activities of their
choice while in the calorimeter. The staff recorded minute-
to-minute observations of the child’s activities. The children
were given lunch at 1130 h outside the calorimeter and
snacks around 0930 and 1430 h inside the calorimeter. The
calorimeter protocol is described fully in our previous pub-
lication (41).

DLW method. TEE was measured over a 7-d period
using the DLW method (1). After collection of the baseline
urine samples, each participant received bymouth 0.086 gIkgj1

body weight of 2H2O at 99.9 atom% 2H and 1.38 gIkgj1 body
weight of H2

18O at 10 atom% 18O (Isotec, Miamisburg, OH).
The bottle holding the 2H2

18O was rinsed three times with
approximately 5–10 mL of drinking water, and the children
were asked to finish drinking all the rinses. Parents were
given instructions on the proper procedure to collect a daily
urine sample at home, record the date and time of the sample
collection, and transfer 1 mL of urine sample each into two
o-ring cryovials. Seven postdose urine samples were col-
lected at home on days 1–7. The urine samples were stored
frozen before transfer for analysis in the Gas Isotope Ratio
Mass Spectrometry Laboratory at the Children’s Nutrition
Research Center.

Urine samples were analyzed for stable hydrogen and
oxygen isotopic enrichment by gas isotope ratio mass
spectrometry (40). For stable hydrogen isotope ratio mea-
surements, 10 KL of urine without further treatment was
reduced to hydrogen gas with 200 mg of zinc reagent at
500-C for 30 min (39). The 2H/1H isotope ratios of the hy-
drogen gas were measured with a Finnigan Delta-E gas
isotope ratio mass spectrometer (Finnigan MAT, San Jose,
CA). For stable oxygen isotope ratio measurements, 100 KL
of urine was allowed to equilibrate with 300 mbar of
CO2 of known 18O content at 25-C for 10 h using a

VG ISOPREP-18 water–CO2 equilibration system (VG
Isogas, Ltd., Cheshire, UK). At the end of the equilibra-
tion, the 18O/16O isotope ratios of the CO2 were measured
with a VG SIRA-12 gas isotope ratio mass spectrometer (VG
Isogas, Ltd.).

The isotopic results were normalized against two inter-
national water standards: Vienna-Standard Mean Ocean
Water and Standard Light Antarctic Precipitation (11). The
isotope dilution spaces for 2H (NH) and

18O (NO) were cal-
culated as follows:

NH or NO ðmolÞ ¼ d A E>

18:02>Ed
½1�

where d is the dose of 2H2O or H2
18O in grams, A is the

amount of laboratory water in grams used in the dose dilu-
tion, > is the amount of 2H2O or H2

18O in grams added to
the laboratory water in the dose dilution, E> is the rise in

2H
or 18O abundance in the laboratory water after the addition
of the isotopic water, and Ed is the rise in 2H or 18O abun-
dance in the urine samples at time 0 obtained from the zero-
time intercepts of the 2H and 18O decay curves in the urine
samples. V̇CO2 was calculated from the fractional turnover
rates of 2H (kH) and

18O (kO) as follows:

V
R
CO2 ðmolIdj1Þ ¼ 0:45537 ðkONO j kHNH Þ ½2�

V̇CO2 was converted to TEE using the Weir equation (37) as
follows:

TEE ðkcalIdj1Þ ¼ 22:4 ð1:106V
R
CO2 þ 3:941V

R
O2Þ ½3�

where V̇O2 was calculated using the relationship V̇O2 =
V̇CO2 /FQ, assuming a food quotient (FQ) (3) equal to 0.86.
Activity energy expenditure (AEE) was calculated as the
difference between TEE and basal metabolic rate (BMR)
computed according to Schofield et al. (27) and thermic ef-
fect of food (TEF), which was assumed to be equal to 10%
of TEE, as follows:

AEE ðkcalIdj1Þ ¼ TEEjBMRj 0:1TEE: ½4�

CSTS and MARS models. CSTS is a parametric
method based on regression and time series analysis to model
a collection of correlated data (6,13). In the CSTS model,
minute-by-minute EE is predicted based on HR, AC, and
other subject covariates. A CSTS or mixed regression model
with random intercepts and random slopes was used. The
model contains population-specific parameters describing
average trends, which are independent vectors of random ef-
fects associated with covariates, and subject-specific param-
eters describing how the response of the individuals deviates
from the mean response over time. A distinguishing feature of
the CSTS model is that the regression coefficients may differ
across individuals, such that each individual has his or her
own regression parameters.

In the final CSTS model, there are three categories of pre-
dictor variables (41). The first category is the time-varying
variables, namely HR, HR2, and 1- and 2-min lead and lag
values of HR; and AC, AC2, and 1- and 2-min lead and lag
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values of AC (x, y, and z axes); and steps and 1- and 2-min
lead and lag values of steps; and position. The second cate-
gory is child-specific characteristics—sex, age, height, weight,
and sleep HR. The third category is interaction terms between
HR, AC, and other variables.

MARS is a nonparametric regression method that ap-
proximates a complex nonlinear relationship by a series of
spline functions on different intervals of the independent
variable (10). A key property of MARS over global para-
metric models is its ability to operate locally. MARS allows
inclusion of interaction terms that are active in a localized
region of the variables involved. Splines are generally de-
fined to be piecewise polynomial functions. The breakpoints
marking the transition from one polynomial to the next are
referred to as knots (or joint points).

In the MARS model, the regression function f (x) is written
as an additive function of the product basis functions:

f
P
M ðxÞ ¼ A0 þ ~

M

m¼1
AmBm ðxÞ ½5�

where A0 is the coefficient of the constant basis function
B0(x) = 1, Bm(x) is the m

th basis function that may be a single
spline function or product of two or more, Am is the coeffi-
cient of the basis function, and M is the number of basis
functions in the model. The MARS algorithm starts with the
constant basis function B0(x) in the model. The final MARS
entailed linear combinations of 30–50 basis functions that
used subject characteristics (age, sex, weight, height, and
sleeping HR), HR, HR2 and AC, AC2, and 1- and 2-min lag
and lead values of HR and AC; steps and 1- and 2-min lag and
lead values of steps; and appropriate interaction terms (41).

Implementation of the CSTS and MARS
models. Application of the CSTS and MARS models to
the AC and HR data obtained during calorimetry entailed
downloading the data and collapsing the data into 60-s
epochs to align with the calorimeter minute-by-minute data.
Implementation of the CSTS and MARS models over the 7-d
DLW period required several decision points. A 60-s epoch
was used for the Actiheart and ActiGraph GT3X+ data.
Nonwear time was defined as 20 min or more of consecutive
zero counts, if the interval was not identified as nighttime
sleep, nap time, or device removal for bathing or aquatic
activities in the records completed by the parents. Visual
inspection of the AC and HR data was also used to assess
nonwear time as well as sleep and awake times. A valid day
required a minimum of 1000 minIdj1 of wear time. The
sufficient number of days of wearing time was defined as a
minimum of four valid days including at least one weekend
day (33).

STATA (release 11; StataCorp LP, College Station, TX)
was used to implement the CSTS and MARS models. EE
was predicted minute-by-minute from child characteristics,
AC, HR, steps, and position. In the DLW protocol, the
minute-by-minute EE values were summed over the 24-h
period to compute TEE. If the 24-h period had incomplete
data due to nonwear time or technical problems with

device, the average minute EE was used to extrapolate to
1440 min. The average TEE over the 7 d was computed for
comparison with TEE measured by DLW.

Statistics. Data are summarized as means T SD. De-
scriptive statistics were performed using STATA (release
11; StataCorp LP). Goodness-of-fit methods were used to
assess and compare competing models based on their
agreement between the measured values and model esti-
mates derived from CSTS or MARS. Mean absolute errors,
mean percent errors, and root mean square errors (RMSE)
were computed to assess the accuracy of the CSTS and
MARS models against room respiration calorimetry and
DLW. Concordance between the observed and predicted EE
was assessed using the Bland and Altman graphical method
(4). While the Bland–Altman (4) diagnostic plot of the dif-
ference versus the mean can provide insight into the mea-
surement differences between two methods, it does not
provide a single measure of agreement. In addition, the
concordance correlation coefficient (CCC) that is considered
appropriate for measuring agreement when the data are
measured on a continuous scale was applied (16,17).

To define AEE (kcalIkgj1I minj1) levels for sedentary,
light, moderate, and vigorous PA, smoothing splines curve
fitting with 10 knots was applied to established HR cut
points (110, 140, and 160 bpm) for PA levels in pre-
schoolers based on direct observation (7,23). The smoothing
parameter was automatically selected using generalized
cross-validation (12). Next, smoothing splines curve fitting
was applied to AEE and AC to identify accelerometer cut
points for Actiheart and ActiGraph. In addition, receiver
operating characteristic (ROC) curves were constructed, and
sensitivity and specificity were computed to identify cut
points. The ROC curve was created by computing sensitivity
and 1 j specificity at different candidate thresholds and
then plotting these points (12). The cut point that maximized
the classification rates (sensitivity + specificity) was selected.
It is important to note that the cut points determined by this
technique may still not be the best for the classification, and
since the thresholds from smoothing splines were a starting
point on ROC curves, the majority vote (combining infor-
mation from smoothing splines and ROC curves) was used
to determine the optimal thresholds (14). Lastly, to deter-
mine the best classification thresholds, a confusion matrix
was constructed. The accuracy of the classifier from the
confusion matrix was calculated as the ratio of the sum of
the main diagonal elements divided by the total sum of the
entries. Hence, the proportion of the correctly classified
cases indicates the accuracy of the candidate classifier.

RESULTS

Calorimeter validation of the CSTS and MARS
models. Fifty preschool-age children, mean age 4.5 T
0.8 yr, were enrolled into the calorimeter validation cohort.
The cohort consisted of 10 white, 16 black, 18 Hispanic, and
6 multiracial children and was balanced for age and sex.
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Twelve percent of the children were overweight or obese.
Mean rates of EE, HR, AC, and steps observed during the
entire calorimetry monitoring are presented in Table 1. A
wide range of EE, HR, AC, and steps was captured during
calorimetry, representing minimal rates during sleep to near-
maximum rates while running in place.

CSTS and MARS models were evaluated for all minute-
by-minute calorimeter data, as well as separately for awake
and sleep periods. Mean absolute errors, mean percent er-
rors, and RMSE for all EE, awake EE, and sleep EE are
presented in Table 2. The mean percent errors for all EE
(1.06 T 0.07 kcalIminj1) werej2.9% T 10.8% and j1.1% T
7.4% for CSTS models and j1.9% T 9.6% and 1.3% T 8.1%
for MARS models using the Actiheart and ActiGraph+HR
devices, respectively. The corresponding RMSE values
were 0.117 and 0.075 for the CSTSmodels and 0.107 and 0.085
kcalIminj1 for the MARS models using the Actiheart and
ActiGraph+HR devices, respectively. Errors were not statisti-
cally associated with age, sex, weight, height, or BMI z-score.

The mean absolute errors and RMSE for awake EE (1.11 T
0.18 kcalIminj1) were similar to those for all EE. Sleep EE
(0.58 T 0.08 kcalIminj1) was evaluated in 21 preschoolers
who napped during the visit. The mean absolute errors and
RMSE were lower and the mean percent errors were greater
during the sleep than during the awake periods because of
the lower rates of EE during sleep. On the basis of the

ActiGraph device without HR, the mean absolute errors,
percent errors, and RMSE for the ActiGraph models were
slightly lower than those for the ActiGraph+HR models.

Bland–Altman plots of the differences between EE mea-
sured in the calorimeter and predicted by the CSTS and
MARS models for all EE are presented for the validation
cohort in Figure 1A. Mean percent errors for all data were
not significantly different from zero. By linear regression,
there was no significant relationship between the method
difference and the size of the measurements. The 95%
limits of agreement (T 0.20 kcalIminj1) demonstrated close
agreement between the measured values and the model
predictions. The ActiGraph+HR CSTS model had the
narrowest 95% limits of agreement, consistent with the lowest
RMSE. The CCC were 0.91 and 0.93 between the measured
and predicted minute-by-minute values for the CSTS models
and 0.88 and 0.86 for the MARS models, using Actiheart and
ActiGraph+HR, respectively.

DLW validation of the CSTS and MARS models. In
the 105 children, ages 4.6 T 0.9 yr, who completed the
DLW procedure while simultaneously wearing Actiheart
and ActiGraph, the monitors were worn for an average of
6.7 T 0.7 d; 94% of the children had six or seven valid
days. Mean weight and height were 18.3 T 3.7 kg and 107 T
7.6 cm, respectively. Mean TEE over the 7-d period was
1205 T 184 kcalIdj1.

CSTS and MARS models were applied to the minute-by-
minute HR and AC data to predict TEE for each 24-h period
and averaged over the 7-d period. Mean absolute errors,
mean percent errors, and RMSE for the predicted TEE
by the CSTS and MARS models using Actiheart and
ActiGraph+HR devices are presented in Table 3. The mean
percent errors were j0.5% T 9.7% and 4.1% T 8.5% for
CSTS models and 3.2% T 10.1% and 7.5% T 10.0% for
MARS models using the Actiheart and ActiGraph+HR de-
vices, respectively. Bland–Altman plots illustrated a non-
significant mean bias for the Actiheart CSTS model and a
positive mean bias for the other models (P G 0.02). The
method difference was not independent of the size of the
TEE measurement (P G 0.01). The 95% limits of agreement

TABLE 1. Observed data of the calorimeter validation cohort.

Age (yr) 4.5 T 0.8 (3.1 to 5.9)a

Weight (kg) 17.6 T 2.6 (13.7 to 24.2)
Height (m) 1.06 T 0.07 (0.91 to 1.21)
BMI z-score j0.05 T 0.86 (j2.07 to 1.86)
Calorimeter monitoring time (min) 218 T 53 (76 to 302)
Energy expenditure (kcalIminj1) 1.06 T 0.21 (0.32 to 5.08)
Heart rate (bpm) 113 T 10 (59 to 217)
Actiheart x-axis counts (cpm) 162 T 108 (0 to 4150)
ActiGraph x-axis counts (cpm) 651 T 291 (0 to 10,698)
ActiGraph y-axis counts (cpm) 713 T 266 (0 to 8032)
ActiGraph z-axis counts (cpm) 760 T 300 (0 to 7966)
Vector magnitude (cpm) 1303 T 493 (0 to 13,077)
Steps (steps per minute) 11 T 5 (0 to 199)

aData are given as means, standard deviation, and ranges; n = 25 boys and 25 girls.
BMI = body mass index; cpm = counts per minute.

TABLE 2. Prediction errors of the CSTS and MARS models for the prediction of EE versus room respiration calorimetry.

CSTS Model MARS Model

Actiheart ActiGraph ActiGraph + HR Actiheart ActiGraph ActiGraph + HR

Mean absolute error (kcalIminj1)
All data j0.034 T 0.114a j0.014 T 0.075 j0.027 T 0.104 0.006 T 0.085
Awake j0.039 T 0.121 j0.005 T 0.07 j0.012 T 0.082 j0.033 T 0.109 0.009 T 0.071 0.003 T 0.088
Sleep 0.015 T 0.088 j0.013 T 0.061 0.046 T 0.07 0.053 T 0.055

Mean percent error (%)
All data j2.9 T 10.8 j1.1 T 7.4 j1.9 T 9.6 1.3 T 8.1
Awake j3.1 T 10.9 j0.2 T 6.7 j0.6 T 7.5 j2.5 T 9.6 1.1 T 6.6 0.8 T 7.9
Sleep 2.5 T 16 j2.7 T 11.9 8.6 T 12.6 10.1 T 9.8

RMSE (kcalIminj1)
All data 0.117 0.075 0.107 0.085
Awake 0.126 0.070 0.082 0.112 0.070 0.087
Sleep 0.089 0.059 0.080 0.073

r2 0.873 0.876 0.898
an = 50 (n = 21 for sleep); data are given as means and standard deviation.
CSTS = cross-sectional time series; EE = energy expenditure; HR = heart rate; MARS = multivariate adaptive regression splines; RMSE = root mean square error.
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were narrowest for the CSTS ActiGraph+HR compared to
the other models. Predicted TEE values were within 1SD
(184 kcalIdj1) of the DLW-TEE for 89% and 93% of the
children based on the CSTS Actiheart and ActiGraph+HR

models, respectively, and for 85% and 80% of the children
based on the MARS Actiheart and ActiGraph+HR models,
respectively. The CCC between the measured and predicted
TEE values were 0.73 and 0.82 for the CSTS models and

FIGURE 1—A, Bland–Altman plots evaluating the prediction of EE by CSTS and MARS models using Actiheart and ActiGraph devices versus
energy expenditure measured by room respiration calorimetry (n = 50). The mean difference between measured EE and predicted EE is plotted
against the mean of the two methods; the mean bias is shown by a solid line and the 95% limits of agreement are shown by dash lines. B, Bland–Altman
plots evaluating the prediction of TEE by CSTS and MARS models using Actiheart and ActiGraph devices versus TEE measured by DLW method
(n = 105). The mean difference between measured TEE and predicted TEE is plotted against the mean of the two methods; the mean bias is shown by a
solid line and the 95% limits of agreement are shown by dash lines. CSTS = cross-sectional time series; DLW = doubly labeled water; EE = energy
expenditure; MARS = multivariate adaptive regression splines.
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0.73 and 0.69 for the MARS models using Actiheart
and ActiGraph+HR, respectively.

Accelerometer count cut points for sedentary,
light, moderate, and vigorous levels of physical
activity in preschool-age children. Smoothing splines
curve fitting was applied to established HR cut points
(110, 140, and 160 bpm) to define AEE (0.013, 0.052, and
0.073 kcalIkgj1Iminj1) levels corresponding to the bound-
aries for sedentary/light, light/moderate, and moderate/vigorous
PA (Fig. 2). Applying the AEE thresholds, the following ini-
tial accelerometer cut points were determined using smooth-
ing splines: 36, 449, and 1297 cpm for Actiheart x-axis; 610,
3908, and 6112 cpm for ActiGraph vector magnitude; and
110, 2120, and 4450 cpm for ActiGraph x-axis. Using the
initial cut points, ROC curves were constructed and maximal

sensitivity + specificity rates were computed, considering two
activity levels at a time (1 vs 2, 2 vs 3, or 3 vs 4, defining 1 as
sedentary, 2 as light, 3 as moderate, and 4 as vigorous). The
number of points used for constructing ROC plots varied;
there were 13,468 points for the 1 versus 2 comparison; 7126
points for the 2 versus 3 comparison; and 1629 points for the
3 versus 4 comparison. Because the number of points was
smaller and the search range for the threshold was larger for
the 3 versus 4 comparison than for the others, the ROC curves
for the 3 versus 4 comparison were less concave. On the basis
of the maximal sensitivity + specificity rates, the cut points
determined by the ROC curves were 41, 261, and 1180 cpm
for Actiheart; 820, 2830, and 6282 cpm for ActiGraph vector
magnitude; and 240, 1170, and 3800 cpm for ActiGraph
x-axis. Different combinations of cut points based on the

TABLE 3. Prediction errors of the CSTS and MARS models for the prediction of TEE versus doubly labeled water method, presented as mean absolute error, percent error, and RMSE.

CSTS Model MARS Model

Actiheart ActiGraph + HR Actiheart ActiGraph + HR

Mean absolute error (kcalIdj1) j19 T 115 41 T 97 27 T 123 79 T 115
Mean percent error (%) j0.5 T 9.7 4.1 T 8.5 3.2 T 10.1 7.5 T 10
RMSE (kcalIdj1) 116 105 125 139

an = 105; data are given as means and standard deviation.
CSTS = cross-sectional time series; HR = heart rate; MARS = multivariate adaptive regression splines; RMSE = root mean square error; TEE = total energy expenditure.

FIGURE 2—Smoothing splines curve fitting used to define activity energy expenditure (AEE) levels for sedentary, light, moderate, and vigorous
physical activity in preschool-age children from heart rate thresholds (A); smoothing splines curve fitting applied to the AEE and accelerometer
counts to identify accelerometer cut points for Actiheart x-axis (B), ActiGraph vector magnitude (C), and ActiGraph x-axis (D).

http://www.acsm-msse.org1222 Official Journal of the American College of Sports Medicine

Copyright © 2014 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.



smoothing splines and ROC results were tried, and the ma-
jority vote was used to determine the best classifier (i.e., the
cut point combination that provided the highest correct clas-
sification rate from the confusion matrix).

The final cut points for Actiheart x-axis, ActiGraph vector
magnitude, and ActiGraph x-axis are presented in Table 4. On
the basis of the confusion matrices, the correctly classified rates
were 81%, 64%, 48%, and 39% for Actiheart; 83%, 64%, 35%,
and 38% for ActiGraph vector magnitude; and 82%, 58%,
37%, and 29% for ActiGraph x-axis for sedentary, light, mod-
erate, and vigorous levels of PA, respectively. Using the di-
agonals of confusion matrices, the overall accuracy rates were
70% for Actiheart, 70% for ActiGraph vector magnitude, and
68% for ActiGraph x-axis. If moderate and vigorous PA
(MVPA) levels are collapsed, the correctly classified rates
would be 81%, 64%, and 73% for Actiheart; 83%, 64%, and
63% for ActiGraph vector magnitude; and 82%, 58%, and 62%
for ActiGraph x-axis for sedentary PA, light PA, and MVPA,
respectively. Using the diagonals of confusion matrices, the
overall accuracy rates were 74% for Actiheart, 74% for Acti-
Graph vector magnitude, and 71% for ActiGraph x-axis.

DISCUSSION

CSTS and MARS population-specific models for the predic-
tion of minute-by-minute EE from accelerometry and HR
monitoring in preschool-age children were validated using
room respiration calorimetry in a controlled laboratory setting
and DLW under free-living conditions. Room calorimetry
allowed us to evaluate minute-by-minute EE data, whereas
DLWallowed us to evaluate the performance of themodels over
a 7-d period. Importantly, these are population-specific models
for preschool-age children that do not require individual cali-
bration in the laboratory. The models include child characteris-
tics that provide some individual specification (age, sex, weight,
height, and sleeping HR) but do not require measurement of the
HR–EE or AC–EE relationships in individual children.

In both the development and validation protocols, the
samples of children were racially/ethnically diverse and
balanced for age and sex. The prevalence of overweight/
obesity was less in our development (20%) and validation
(12%) cohorts than the national average (27%). However,
our prediction errors were not significantly associated with
age, sex, weight, height, or BMI z-scores; therefore, we are
confident that our models are robust for preschool children
who have characteristics in the range of our sample.

Calorimeter validation of the CSTS and MARS
models. For the calorimeter validation, a wide range of EE
and HR values was attained inside the calorimeter room with
minimum values observed during sleep and near-maximum
values during running in place. Relative to calorimetry,
mean percent errors for the CSTS and MARS models for all
EE data were acceptable, ranging from T7.4% to T10.8%.
The Bland–Altman plots indicated a lack of bias and ac-
ceptable limits of agreement. The high concordance between
the predicted and measured EE (CCC = 0.86–0.93) affirms
the validity of the models for preschool-age children.

The ActiGraph CSTS and MARS models implemented
during awake time outperformed the ActiGraph+HR models.
For investigators who elect to use ActiGraph GT3X+ dur-
ing awake time only, EE can be predicted accurately with
accelerometry using the ActiGraph CSTS orMARSmodels. If
an estimate of the 24-h TEE is desired, the Schofield equation
for BMR can be used to estimate sleep EE. We found that the
Schofield prediction of basal EE agreed with measured sleep
EE within j2.8% T 10.1%.

DLW validation of the CSTS and MARS
models. Relative to the DLW method, mean percent errors
ranging from 8.5% to 10.1% were comparable to the errors
attained for the CSTS and MARS models in the calorimetry
validation. There was a lack of bias with the Actiheart CSTS
model and a slightly positive bias with the other models and
acceptable 95% limits of agreement. The concordance be-
tween the predicted and measured EE (CCC = 0.69–0.82)
affirms the validity of the models for preschool-age chil-
dren. The DLW is an excellent method for measuring aver-
age TEE under free-living conditions, but its application
does involve several assumptions and potential sources of
error (25). Validations against respiratory calorimetry have
demonstrated that the method is accurate and has a precision
of 2%–8%, depending on the loading dose, the length of the
metabolic period, and the number of samples (26). Given the
fact that both calorimetry and the DLW method have their
own inherent errors, we consider the limits of agreement
with the CSTS and MARS models acceptable. Although
subject characteristics (age, sex, and weight) account for a
large proportion of the variance in TEE, the level of PA
varies considerably between children. In this study, the PA
level (PAL = TEE/BMR) ranged from 1.05 to 1.69; how-
ever, this variable component of TEE was captured objec-
tively by accelerometry and HR monitoring.

CSTS and MARS models for the prediction of EE in pre-
schoolers were developed and validated here across a wide
range of body sizes, levels of EE, and PA and should there-
fore be robust for similar populations of preschool-age
children. Although the CSTS and MARS models performed
comparably, there are inherent differences in the two ap-
proaches. CSTS is a parametric approach to model a collec-
tion of correlated data, taking into account within-individual
changes and between-individual heterogeneity (6,13). CSTS
models explicitly distinguish between-subject and within-
subject sources of variability and allow for subject-specific

TABLE 4. Accelerometer count cutoffs for sedentary/light, light/moderate, and moderate/
vigorous cutoffs for physical activity in preschool-age children.

Sedentary/
Light

Light/
Moderate

Moderate/
Vigorous

Actiheart x-axis (cpm) 41 449 1297
ActiGraph vector magnitude (cpm) 820 3908 6112
ActiGraph x-axis (cpm) 240 2120 4450

cpm = counts per minute.

ENERGY EXPENDITURE OF PRESCHOOLERS Medicine & Science in Sports & Exercised 1223

A
PPLIED

SC
IEN

C
ES

Copyright © 2014 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.



description of the mean response profile. MARS is a multi-
variate nonparametric regression that approximates a com-
plex relationship (nonlinear) by a series of spline functions
on different intervals of the independent variable (10). The
CSTS models seem to be more robust to outliers than the
MARS models. For 24-h applications, the Actiheart or
ActiGraph+HR models are recommended. For awake periods
only, the Actiheart, ActiGraph+HR, or ActiGraph models can
be used. Although model development required sophisticated
statistical software, the CSTS and MARS models can be
easily implemented using standard statistical programs or
computational spreadsheets such as Excel.

Accelerometer count cut points for sedentary,
light, moderate, and vigorous levels of PA in
preschool-age children. Actiheart and ActiGraph cut
points for PA levels have been estimated based on direct
observations (5,24,28) and respiration calorimetry (2,21).
Direct observation methods are reliant on human observa-
tion, interpretation, and recording of activity and are thus
inherently subjective. The intensity of PA is difficult to
quantify by observation alone. Because considerable vari-
ability is seen in the AC and EE for any given activity
in preschoolers, it was critical to base PA categorization on a
quantitative rather than a qualitative criterion. We chose
to use AEE (0.013, 0.052, and 0.073 kcalIkgj1Iminj1) based
on established HR thresholds of 110 bpm for sedentary/light,
140 bpm for light/moderate, and 160 bpm for moderate/
vigorous levels of PA (7). These thresholds equate to 1.5, 2.8,
and 3.5 child-specific metabolic equivalents (METs), compa-
rable to those derived in Adolph et al. (2). Our accelerometer
cut points for moderate and vigorous PA corresponding to 2.8
and 3.5 child METs are generally lower than the criteria used
in older children and adolescents (32), reflecting the lower
levels of AEE achievable and sustainable in developmentally
immature preschoolers (2,21,22,29,30). The relatively higher
BMR in preschoolers compared to older children also con-
found the interpretation of MET values in these young children.
Given the developmental differences and distinct relation-
ships between HR, AC, and EE in preschoolers compared
with older children, age-specific EE prediction equations and
accelerometer cut points are necessary.

The overall classification accuracy of the cut points
(68%–70%) was similar among Actiheart, ActiGraph vector
magnitude, and ActiGraph x-axis. The specific classified
rates were acceptable for sedentary and light but not for
moderate and vigorous levels of PA. In concordance with
our previous publication (2), there was substantial overlap of
AC between the moderate and vigorous PA levels as seen by
the large dispersion around the AEE–AC relationship. Clear
partitioning of AC between moderate and vigorous PA may
be a limitation of accelerometer use in preschoolers because
they do not attain or sustain high levels of physical exertion
for extended periods. However, if moderate and vigorous
levels of PA are collapsed, the correctly classified rates for
the MVPA category improve substantially to 73%, 63%, and
62% and the overall classification accuracy of the cut points

improved to 74%, 74%, and 71% for Actiheart, ActiGraph
vector magnitude, and ActiGraph x-axis, respectively. In
practicality, preschoolers spend only a small percent of awake
time in vigorous PA; therefore, the collapsed category of
MVPA may be more meaningful for health outcomes.

We can compare our final cut points for sedentary, light,
moderate, and vigorous PA levels with published values for
Actiheart and ActiGraph x-axis. Because GT3X+ vector
magnitude is a new feature, cut points have not been pub-
lished previously. For the ActiGraph x-axis, our sedentary
cut point was similar to that of Trost et al. (31), but was
much lower than those of Reilly et al. (24), Sirard et al. (28),
and van Cauwenberghe et al. (36), probably because of dif-
ferent statistical approaches, because the definition of seden-
tary activities was similar across studies, i.e., stationary/no
movement or stationary/no trunk movement. Our moderate
and vigorous cut points were slightly higher than those of
Pate et al. (21) and Trost et al. (31), but lower than those of
Sirard et al. (28). Pate et al. predicted moderate and vigorous
PA thresholds by a linear equation relating AC and V̇O2.
Applying this equation to our calorimeter data, we found that
V̇O2 was overestimated by 10%–20% depending on the ac-
tivity. In their calibration study, overestimation of V̇O2 would
have resulted in lower ActiGraph cut points for moderate and
vigorous PA. For Actiheart, our cut points are higher than
those published earlier (2) because of the structure of the data
and curve fitting procedures used. Our Actiheart cut points
are lower than those recommended by de Bock et al. (5) for
sedentary/light but similar for light/moderate boundaries.

Although there is much precedent in the literature for
simple accelerometer cut points for PA levels, this approach
inevitably results in some misclassification of AC between
PA categories. Furthermore, simple cut points do not take
advantage of the richness of the accelerometer data that
include acceleration in three directions, steps, and position.
A multidimensional approach that incorporates all the AC
data and considers the surrounding AC counts (i.e., lag and
lead values) may be superior for the classification of PA
levels. The research field is moving toward classification
methods such as machine learning, pattern recognition, and
neural net; in fact, we have published one article on machine
learning using this data set (42). These more advanced
classification methods, too, require boundaries based on
external criteria for their development.

In conclusion, CSTS and MARS models based on child
characteristics, accelerometry, and HR monitoring were
validated for the prediction of minute-by-minute EE in
preschool-age children. Relative to the room respiration
calorimetry and the DLW method, the mean bias and limits
of agreement indicate that the CSTS and MARS models are
acceptable for the prediction of EE in preschool-age children.
Accelerometer cut points were satisfactory for the classifica-
tion of sedentary PA, light PA, and MVPA in preschoolers.
Therefore, CSTS and MARS models using nonintrusive, in-
expensive devices can be used to measure EE and PA levels of
preschool-age children in their natural settings.
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